Abstract
Commercially available Electro-Explosive Devices (EEDs), such as blasting caps, use electrical current to initiate a primary charge. Various detonators including bridge wire, match-type, exploding bridge wire, and slapper. The basic operating principle of the match-type device is to heat the ignition element to the ignition temperature of the primary explosive. The normal operation current profiles, both constant current and pulsed excitation, are well known, as is the ignition temperature. However, as safety and reliability are of great concern, both in the operation and storage of EEDs, the susceptibility of these devices to transient or spurious fields is of interest. The susceptibility of match-type EEDs to high pulsed electric fields is examined. A Finite Element Method (FEM) simulation is performed using COMSOL to determine the induced current in the bridgewire due to applied electric fields and the resulting Joule heating of the wire. Several situations are investigated including the EED in conductive and non-conductive media and leads open or terminated representing operational and storage conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.