Abstract

Many bacteria can become viable but nonculturable (VBNC) in response to stressors commonly identified in agrifood systems. Campylobacter is able to enter the VBNC state to evade unfavorable environmental conditions, but how food processing can induce Campylobacter jejuni to enter this state and the potential role of foods in inducing the VBNC state in C. jejuni remains largely unknown. In this study, the culturability and viability of C. jejuni cells were investigated under chlorine treatment (25 ppm), aerobic stress (atmospheric condition), and low-temperature (4°C) conditions that mimicked food processing. In addition, the behaviors of C. jejuni cells in ultrahigh-temperature (UHT) and pasteurized milk were also monitored during refrigerated storage. The numbers of viable and culturable C. jejuni cells in both the pure bacterial culture and food matrices were separately determined by propidium monoazide (PMA)-quantitative PCR (qPCR) and plating assay. The C. jejuni cells lost their culturability but partially retained their viability (1% to 10%) once mixed with chlorine. In comparison, ~10% of C. jejuni cells were induced to enter the VBNC state after 24 h and 20 days under aerobic and low-temperature conditions, respectively. The viability of the C. jejuni cells remained stable during the induction process in UHT (>10%) and pasteurized (>10%) milk. The number of culturable C. jejuni cells decreased quickly in pasteurized milk, but culturable cells could still be detected in the end (day 21). In contrast, the number of culturable C. jejuni cells slowly decreased, and they became undetectable after >42 days in UHT milk. The C. jejuni cells responded differently to various stress conditions and survived in high numbers in the VBNC state in agrifood systems. IMPORTANCE The VBNC state of pathogens can pose risks to food safety and public health because the pathogens cannot be detected using conventional microbiological culture-based methods but can resuscitate under favorable conditions to develop virulence. As a leading cause of human gastroenteritis worldwide, C. jejuni can enter the VBNC state to survive in the environment and food-processing chain with high prevalence. In this study, the effect of food-processing conditions and food products on the development of VBNC state in C. jejuni was investigated, providing a better understanding of the interaction between C. jejuni and the agroecosystem. The knowledge elicited from this study can aid in developing novel intervention strategies to reduce the food safety risks associated with this microbe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call