Abstract

The role of reactive nitrogen species (RNS) formed from nitrate photolysis has aroused interests in transformation of contaminants of emerging concern. This study investigated the influence of UV wavelengths (255, 285 and 365 nm) on photolysis of nitrate for degradation of atrazine (ATZ). The UV285/nitrate system showed the fastest rate constant for degradation of ATZ with kobs of 0.0022 cm2 mJ−1. UV photolysis, RNS, and hydroxyl radical (HO) were identified as main contributors to ATZ degradation in UV/nitrate system. Among the contributors, RNS made the major contribution to degradation of ATZ in UV285/nitrate system, while HO is the predominant specie in UV255/nitrate system. Variance decomposition analysis showed that degradation of ATZ was slightly impacted by natural organic matter and carbonate/bicarbonate in UV285/nitrate system but was dramatically affected in UV255/nitrate system. Main transformation products of ATZ in UV285/nitrate system were identified and possible pathways were proposed. RNS were confirmed to be favorable for acceleration of ATZ photolysis through further reaction of RNS with hydroxyatrazine (with electron-rich moieties). Our study provides deep insights on the influence of UV wavelength on nitrate photolysis and ATZ degradation, and provides a novel method for remediation of water co-contaminated by nitrate and organic contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call