Abstract

Mosquitoes characteristically feed on plant-derived carbohydrates and honeydew just after emergence and intermittently during their lives. Development of toxic baits focusing on this carbohydrate-seeking behavior may potentially contribute to localized control. In the present study, ten insecticides were fed to female Culex quinquefasciatus, Anopheles quadrimaculatus, and Aedes taeniorhynchus in a 10% sucrose solution. Active ingredients representative of five classes of insecticides (pyrethroids, phenylpyroles, pyrroles, neonicotinoids, and macrocyclic lactones) were selected for comparison with commercial formulations used to facilitate incorporation of active ingredients into aqueous sucrose solutions. Sucrose as a phagostimulant significantly enhanced mortality to toxicants. In general, the most effective active ingredients were fipronil, deltamethrin and imidacloprid, followed by spinosad, thiamethoxam, bifenthrin, permethrin, and cyfluthrin. The least effective ingredients were chlorfenapyr and ivermectin. For some of the ingredients tested, Cx. quinquefasciatus was the least susceptible species. One-day-old male Cx. quinquefasciatus were more susceptible than females; however, no differences existed between one- and seven-day-old mosquitoes. There were no differences in susceptibility between unfed and gravid ten-day-old female Cx. quinquefasciatus to bifenthrin. In conclusion, several pesticides from different classes of compounds have potential for use in development of toxic baits for mosquitoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call