Abstract

Sepsis survivors exhibit immune dysfunction, hematological changes, and increased risk of infection. The long-term impacts of sepsis on hematopoiesis were analyzed using a surgical model of murine sepsis, resulting in 50% survival. During acute disease, phenotypic hematopoietic stem and progenitor cells (HSPCs) were reduced in the bone marrow (BM), concomitant with increased myeloid colony-forming units and extramedullary hematopoiesis. Upon recovery, BM HSPCs were increased and exhibited normal function in the context of transplantation. To evaluate hematopoietic responses in sepsis survivors, we treated recovered sham and cecal ligation and puncture mice with a mobilizing regimen of granulocyte colony-stimulating factor (G-CSF) at day 20 post-surgery. Sepsis survivors failed to undergo emergency myelopoiesis and HSPC mobilization in response to G-CSF administration. G-CSF is produced in response to acute infection and injury to expedite the production of innate immune cells; therefore, our findings contribute to a new understanding of how sepsis predisposes to subsequent infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call