Abstract

ABSTRACTPretreatment selection or censoring (“selection on treatment”) can occur when two treatment levels are compared ignoring the third option of neither treatment, in “censoring by death” settings where treatment is only defined for those who survive long enough to receive it, or in general in studies where the treatment is only defined for a subset of the population. Unfortunately, the standard instrumental variable (IV) estimand is not defined in the presence of such selection, so we consider estimating a new survivor-complier causal effect. Although this effect is generally not identified under standard IV assumptions, it is possible to construct sharp bounds. We derive these bounds and give a corresponding data-driven sensitivity analysis, along with nonparametric yet efficient estimation methods. Importantly, our approach allows for high-dimensional confounding adjustment, and valid inference even after employing machine learning. Incorporating covariates can tighten bounds dramatically, especially when they are strong predictors of the selection process. We apply the methods in a UK cohort study of critical care patients to examine the mortality effects of prompt admission to the intensive care unit, using ICU bed availability as an instrument. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.