Abstract
Prostate cancer is the leading and most aggressive cancer around the world, several therapeutic approaches have emerged but none have achieved the satisfactory result. However, these therapeutic approaches face many challenges related to their delivery to target cells, including their in vivo decay, the limited uptake by target cells, the requirements for nuclear penetration (in some cases), and the damage caused to healthy cells. These barriers can be avoided by effective, targeted, combinatorial approaches, with minimal side effects, which are being investigated for the treatment of cancer. Here, we developed a combinatorial nanomedicine comprising abiraterone and enzalutamide bioconjugated survivin-encapsulated gold nanoparticles (AbEzSvGNPs) for targeted therapy of prostate cancer. AbEzSvGNPs were characterized by different biophysical techniques such as UV visible spectroscopy, dynamic light scattering, zeta potential, transmission electron microscope, and Fourier transform infrared spectroscopy. Interestingly, the effect of abiraterone, enzalutamide and surviving encapsulated gold nanoparticles was found to be synergistic in nature in AbEzSvGNPs against DU 145 (IC50 = 4.21 µM) and PC-3 (IC50 = 5.58 µM) cells and their potential was observed to be greatly enhanced as compared with the combined effect of the drugs (abiraterone and enzalutamide) in their free form. Furthermore, AbEzSvGNPs were found to be highly safe and did not exhibit significant cytotoxicity against normal rat kidney cells. The observed effects of AbEzSvGNPs involved the modulation of different signaling pathways in prostate cancer cells. This delivery system employed non-androgen receptor-dependent delivery of abiraterone and enzalutamide. The anionic AbEzSvGNPs delivered abiraterone and enzalutamide unaltered into the nucleus through caveolae mediated internalization to act nonspecifically on DNA; internalization of the anionic nanoparticles into the cytoplasm was also observed via other routes. AbEzSvGNPs synthesized and evaluated in this study are promising candidates for prostate cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.