Abstract

The present series of papers is part of an integrated research program to understand the effective functional strategy of native light-harvesting molecular antennae in photosynthetic organisms. This work tackles the problem of the structural optimization of light-harvesting antennae of variable size. In vivo, the size responds to the illumination intensity, thus implying more sophisticated optimization strategies, since larger antenna size demands finer structural tuning. Earlier modeling experiments showed that the aggregation of the antenna pigments, apart from being itself a universal structural factor of functional antenna optimization with any (!) spatial lattice of light-harvesting molecules, determines the antenna performance provided that the degree of aggregation varies: the larger the unit building block, the higher the efficacy of the whole structure. It means that altering the degree of pigment aggregation in response to the antenna size is biologically expedient. In the case of the oligomeric chlorosomal antenna of green bacteria, the strategy of variable antenna structural optimization in response to the illumination intensity was demonstrated to take place in vivo and facilitate high antenna performance regardless of its size, thus allowing bacteria to survive in diverse illumination conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call