Abstract
This study analyzed petroleum-contaminated soils from south and north locations in China to explore the structure, diversity, functional genes and assembly processes of microbial communities’ . Compared with soils from south locations, soils from northern regions exhibited elevated pH, total nitrogen (TN), and total petroleum hydrocarbon (TPH) levels. Among these, TN and TPH were the most influential on the microbial community. The dominant phyla for bacteria, archaea, and fungi were Proteobacteria, Thaumarchaeota, and Ascomycota, respectively. Among them, Proteobacteria was strongly correlated with various functional genes including alkB and many aromatics degradation and denitrification genes (r > 0.9, p < 0.01), suggesting that Proteobacteria play an important role in petroleum-contaminated soils. Metabolism in northern regions was more active than that in southern regions. The northern regions showed a pronounced tendency for denitrification, while the southern regions were characterized by acetoclastic methanogenesis. The assembly of microbial communities exhibited regional patterns, the deterministic assembly was more prominent in the northern soils, while the stochastic assembly was evident in the southern soils. Overall, these findings provide a new conceptual framework to understand the biosphere in petroleum-contaminated soil, potentially guiding improved management practices in the environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.