Abstract

Evading apoptosis is considered to be a hallmark of cancer, because mutations in apoptotic regulators invariably accompany tumorigenesis. Many chemotherapeutic agents induce apoptosis, and so disruption of apoptosis during tumour evolution can promote drug resistance. For example, Akt is an apoptotic regulator that is activated in many cancers and may promote drug resistance in vitro. Nevertheless, how Akt disables apoptosis and its contribution to clinical drug resistance are unclear. Using a murine lymphoma model, we show that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects. eIF4E, a translational regulator that acts downstream of Akt and mTOR, recapitulates Akt's action in tumorigenesis and drug resistance, but is unable to confer sensitivity to rapamycin and chemotherapy. These results establish Akt signalling through mTOR and eIF4E as an important mechanism of oncogenesis and drug resistance in vivo, and reveal how targeting apoptotic programmes can restore drug sensitivity in a genotype-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.