Abstract

We review some old and prove some new results on the survival probability of a random walk among a Poisson system of moving traps on \({\mathbb{Z}}^{d}\), which can also be interpreted as the solution of a parabolic Anderson model with a random time-dependent potential. We show that the annealed survival probability decays asymptotically as e\({}^{-{\lambda }_{1}\sqrt{t}}\) for d = 1, as e\({}^{-{\lambda }_{2}t/\log t}\) for d = 2, and as e\({}^{-{\lambda }_{d}t}\) for d ≥ 3, where λ1 and λ2 can be identified explicitly. In addition, we show that the quenched survival probability decays asymptotically as e\({}^{-\tilde{{\lambda }}_{d}t}\), with \(\tilde{{\lambda }}_{d} > 0\) for all d ≥ 1. A key ingredient in bounding the annealed survival probability is what is known in the physics literature as the Pascal principle, which asserts that the annealed survival probability is maximized if the random walk stays at a fixed position. A corollary of independent interest is that the expected cardinality of the range of a continuous time symmetric random walk increases under perturbation by a deterministic path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.