Abstract

We study the long-time tails of the survival probability P(t) of an A particle diffusing in d-dimensional media in the presence of a concentration rho of traps B that move subdiffusively, such that the mean square displacement of each trap grows as tgamma with 0 < or = gamma < or =1. Starting from a continuous time random walk description of the motion of the particle and of the traps, we derive lower and upper bounds for P(t) and show that for gamma < or =2/(d+2) these bounds coincide asymptotically, thus determining asymptotically exact results. The asymptotic decay law in this regime is exactly that obtained for immobile traps. This means that for sufficiently subdiffusive traps, the moving A particle sees the traps as essentially immobile, and Lifshitz or trapping tails remain unchanged. For gamma >2/(d+2) and d< or =2 the upper and lower bounds again coincide, leading to a decay law equal to that of a stationary particle. Thus, in this regime the moving traps see the particle as essentially immobile. For d>2 , however, the upper and lower bounds in this gamma regime no longer coincide, and the decay law for the survival probability of the A particle remains ambiguous.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call