Abstract
BackgroundMethicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations. As such, the outer shell barrier of turnout gear jackets may be an indirect transmission source and proper disinfection is essential to reduce the risk of exposure to fire fighters. Cleaning practices vary considerably among fire stations, and a method to assess disinfection of gear washed in commercial washer/extractors is needed.MethodsSwatches (1 in. × 1.5 in.) of the outer shell fabrics, Gemini™, Advance™, and Pioneer™, of turnout gear were inoculated with S. aureus, and washed with an Environmental Protection Agency-registered sanitizer commonly used to wash turnout gear. To initially assess the sanitizer, inoculated swatches were washed in small tubes according to the American Society for Testing Materials E2274 Protocol for evaluating laundry sanitizers. Inoculated swatches were also pinned to turnout gear jackets and washed in a Milnor commercial washer/extractor. Viable S. aureus that remained attached to fabric swatches after washing were recovered and quantified. Scanning Electron Microscopy was used to characterize the stages of S. aureus biofilm formation on the swatches that can result in resistance to disinfection.ResultsDisinfection in small tubes for only 10 s reduced the viability of S. aureus on Gemini™, Advance™, and Pioneer™ by 73, 99, and 100%, respectively. In contrast, disinfection of S. aureus-contaminated Gemini™ swatches pinned to turnout gear and washed in the washer/extractor was 99.7% effective. Scanning Electron Microscopy showed that biofilm formation begins as early as 5 h after attachment of S. aureus.ConclusionThis sanitizer and, likely, others containing the anti-microbial agent didecyl dimethyl ammonium chloride, is an effective disinfectant of S. aureus. Inclusion of contaminated outer shell swatches in the wash cycle affords a simple and quantitative method to assess sanitization of gear by commercial gear cleaning facilities. This methodology can be extended to assess for other bacterial contaminants. Sanitizer-resistant strains will continue to pose problems, and biofilm formation may affect the cleanliness of the washed turnout gear. Our methodology for assessing effectiveness of disinfection may help reduce the occupational exposure to fire fighters from bacterial contaminants.
Highlights
Methicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations
Using the methods outlined in the American Society for Testing Materials (ASTM) E2274 [12], ASTME1054 [13], and National Fire Protection Association (NFPA) 1851 [11], the purpose of this study was to [1] evaluate the efficacy of this sanitizer to disinfect S. aureus contamination on these outer shell fabrics, and [2] develop a simple yet quantitative methodology that can be used by independent service providers (ISPs) that launder fire fighter turnout gear to verify S. aureus decontamination
scanning electron microscopy (SEM) examination prior to fabric sterilization revealed cocci present in biofilms and rod-like bacteria attached to the fibers of decommissioned turnout gear jackets with GeminiTM (Fig. 1a) and AdvanceTM (Fig. 1b) outershells
Summary
Methicillin-resistant Staphylococcus aureus contamination on surfaces including turnout gear had been found throughout a number of fire stations. Of the 119 MSSA positive and 52 MRSA positive environmental samples, seven (5.9%) outer shells of fire fighter turnout gear were MSSA positive and five (9.6%) were MRSA positive. These studies suggest that soiled and/or improperly cleaned turnout gear may indirectly transmit S. aureus. It has been demonstrated that staphylococci bacteria can survive for months (> 90 days) after drying on hospital linens [8] and even up to 7 months on surfaces [9], increasing the likelihood of indirect transmission in communal living areas, and placing fire fighters at an elevated risk for S. aureus infection
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of occupational medicine and toxicology (London, England)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.