Abstract

Destruction of the quantum mechanical features of matter by decoherence restricts the applicability of quantum technologies. The limited information of the quantum features (such as coherence) in the basis-dependent observations urges the use of a basis-independent quantity for a better understanding. In this context, the state purity of a quantum system (composed of quantized pigments immersed in a noisy protein environment) is studied with a numerically exact hierarchical equations of motion approach over the wide range of the parameter domain (with the main focus on the nonzero-energy gradient). It is noted that the state purity does not necessarily reflect any significant information about the persistence of quantum features (in the dissipative environment), even when the quantum coherence survives at the steady state in both the localized and the eigenstate basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.