Abstract

The radurization effects of gamma ray and electron beam irradiation at 1.5 and 3.0 kGy on beef steaks inoculated with Salmonella Typhimurium and Pseudomonas fluorescens were investigated during 8 days of storage at 5°C. Total bacterial counts and numbers of Salmonella Typhimurium and P. fluorescens were analyzed at 2-day intervals. Total bacterial counts of samples irradiated by both gamma rays and electron beam were significantly (P < 0.05) reduced by 3.8 to 5.3 log CFU/g. Salmonella Typhimurium was not detectable during the experimental period. P. fluorescens counts of beef samples irradiated by gamma rays at both 1.5 and 3.0 kGy were not detected; however, P. fluorescens in samples irradiated by electron beam at 1.5 and 3.0 kGy was recovered after 2 days, and bacterial counts reached 7.8 and 6.9 log CFU/g, respectively. Both gamma ray and electron beam irradiation reduced total bacterial counts initially, possibly extending shelf life. Irradiation was very effective in destroying Salmonella Typhimurium; however, P. fluorescens was not completely eliminated by electron beam irradiation. Consequently, gamma ray irradiation was more effective than electron beam irradiation in the destruction of P. fluorescens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call