Abstract

Increasing atmospheric carbon dioxide levels are causing ocean acidification, compromising the ability of some marine organisms to build and maintain support structures. An analysis of mussels from a submarine volcano setting with natural low-pH conditions shows low shell thicknesses and growth rates, but survival over up to four decades. Increasing atmospheric carbon dioxide levels are causing ocean acidification1,2, compromising the ability of some marine organisms to build and maintain support structures3 as the equilibrium state of inorganic carbon moves away from calcium carbonate4. Few marine organisms tolerate conditions where ocean pH falls significantly below today’s value of about 8.1 and aragonite and calcite saturation values below 1 (refs 5, 6). Here we report dense clusters of the vent mussel Bathymodiolus brevior in natural conditions of pH values between 5.36 and 7.29 on northwest Eifuku volcano, Mariana arc, where liquid carbon dioxide and hydrogen sulphide emerge in a hydrothermal setting. We find that both shell thickness and daily growth increments in shells from northwest Eifuku are only about half those recorded from mussels living in water with pH>7.8. Low pH may therefore also be implicated in metabolic impairment7. We identify four-decade-old mussels, but suggest that the mussels can survive for so long only if their protective shell covering remains intact: crabs that could expose the underlying calcium carbonate to dissolution are absent from this setting. The mussels’ ability to precipitate shells in such low-pH conditions is remarkable. Nevertheless, the vulnerability of molluscs to predators is likely to increase in a future ocean with low pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.