Abstract

The survival of viruses in droplets is known to depend on droplets’ chemical composition, which may vary in respiratory fluid between individuals and over the course of disease. This relationship is also important for understanding the persistence of viruses in droplets generated from wastewater, freshwater, and seawater. We investigated the effects of salt (0, 1, and 35 g/L), protein (0, 100, and 1000 μg/mL), surfactant (0, 1, and 10 μg/mL), and droplet pH (4.0, 7.0, and 10.0) on the viability of viruses in 1-μL droplets pipetted onto polystyrene surfaces and exposed to 20%, 50%, and 80% relative humidity (RH) using a culture-based approach. Results showed that viability of MS2, a non-enveloped virus, was generally higher than that of Φ6, an enveloped virus, in droplets after 1 hour. The chemical composition of droplets greatly influenced virus viability. Specifically, the survival of MS2 was similar in droplets at different pH values, but the viability of Φ6 was significantly reduced in acidic and basic droplets compared to neutral ones. The presence of bovine serum albumin protected both MS2 and Φ6 from inactivation in droplets. The effects of sodium chloride and the surfactant sodium dodecyl sulfate varied by virus type and RH. Meanwhile, RH affected the viability of viruses as shown previously: viability was lowest at intermediate to high RH. The results demonstrate that the viability of viruses is determined by the chemical composition of carrier droplets, especially pH and protein content, and environmental factors. These findings emphasize the importance of understanding the chemical composition of carrier droplets in order to predict the persistence of viruses contained in them.

Highlights

  • Pathogenic organisms, including bacteria, viruses, fungi, protozoa, and helminths, cause infections that are a leading cause of global morbidity and mortality [1]

  • Our results show that the chemistry of carrier droplets has significant impacts on the viability of both non-enveloped and enveloped viruses

  • The results suggest that the chemical composition of carrier droplets can influence the stability of viruses when they are released into the environment

Read more

Summary

Introduction

Pathogenic organisms, including bacteria, viruses, fungi, protozoa, and helminths, cause infections that are a leading cause of global morbidity and mortality [1]. Viruses are responsible for diseases such as COVID-19, influenza, hepatitis, Ebola virus disease, and many cases of gastroenteritis. Some of these diseases rely on the spread of viruses in the environment, from infected hosts to susceptible hosts via aerosol, droplet, fomite, and/or fecal-oral routes. Virus survival in droplets of various compositions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call