Abstract

The loss of coherence in a general open quantum system interacting with a bosonic environment is analyzed. The reservoir is initially in a thermal state. The reduced dynamics is described by a non-Markovian time-local master equation. We consider spectral densities that are sub- or super-Ohmic at low frequencies and arbitrarily shaped at high frequencies. In the super-Ohmic regime, for noninteger frequency powers larger than 2, long time survival of coherence appears. In the latter regime, at vanishing temperature, the asymptotic amount of surviving coherence is stabilized to its initial value, up to a phase factor, by properly increasing the bandwidth and decreasing the low-frequency profile of the spectral density. For noninteger positive frequency powers less than 2, stretched exponential-like decoherence is found over long times. The relaxations to the asymptotic configurations become arbitrarily slow by approaching the frequency power 2 of the super-Ohmic regime. The same dependence on temperature, spectral density, and scale frequency appears for purity and concurrence of two qubits and coherence of a qubit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.