Abstract
Lactobacilli are the dominant bacteria in the healthy vaginal tract, preventing the income of pathogenic microorganisms, either sexually or not transmitted. Probiotics are used to restore the vaginal microbiome by local administration. However, the ascendant colonization is proposed as a way to restore the vaginal balance, and to exert some complementary effects on the host, situation that requires that probiotic strains resist the gastrointestinal tract passage. To determine which probiotic vaginal strains were able to resist different gastrointestinal factors (pH, bile salts, and enzymes) to advance in the design of oral formulas. Different protocols were applied to evaluate the growth of 24 beneficial vaginal lactic bacteria (BVL) strains at low pH and high bile salts (individually evaluated) and in combined protocols. The viability of the strains in simulated gastrointestinal tract conditions was studied to select the most resistant strains. A low number of BVL was able to grow at low pH. Most of the strains did not survive at high bile salts concentration. The passage through pH first and bile salts later showed that only three strains were able to survive. In the simulated intestinal conditions, only Lactobacillus gasseri CRL1290, L. jensenii CRL1313, and L. jensenii CRL1349 decrease one or two logarithmic growth units (UFC/ml) at the end of the assay, maintaining their beneficial properties. The behavior of BVL in the conditions assayed is not related to specific strain or metabolic group, because the resistance is strain-specific. The results highlight the importance of the screening performed in a way to select the most adequate strains to be included in the oral designed formula for the restoration of the vaginal tract microbiome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.