Abstract
We analyze evolutionary dynamics in a confluent, branching cellular population, such as in a growing duct, vasculature, or in a branching microbial colony. We focus on the coarse-grained features of the evolution and build a statistical model that captures the essential features of the dynamics. Using simulations and analytic approaches, we show that the survival probability of strains within the growing population is sensitive to the branching geometry: Branch bifurcations enhance survival probability due to an overall population growth (i.e., “inflation”), while branch termination and the small effective population size at the growing branch tips increase the probability of strain extinction. We show that the evolutionary dynamics may be captured on a wide range of branch geometries parameterized just by the branch diameter N0 and branching rate b. We find that the survival probability of neutral cell strains is largest at an “optimal” branching rate, which balances the effects of inflation and branch termination. We find that increasing the selective advantage s of the cell strain mitigates the inflationary effect by decreasing the average time at which the mutant cell fate is determined. For sufficiently large selective advantages, the survival probability of the advantageous mutant decreases monotonically with the branching rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.