Abstract
We consider a Markov chain in continuous time with one absorbing state and a finite set S of transient states. When S is irreducible the limiting distribution of the chain as t → ∞ , conditional on survival up to time t , is known to equal the (unique) quasi-stationary distribution of the chain. We address the problem of generalizing this result to a setting in which S may be reducible, and show that it remains valid if the eigenvalue with maximal real part of the generator of the (sub)Markov chain on S has geometric (but not, necessarily, algebraic) multiplicity one. The result is then applied to pure death processes and, more generally, to quasi-death processes. We also show that the result holds true even when the geometric multiplicity is larger than one, provided the irreducible subsets of S satisfy an accessibility constraint. A key role in the analysis is played by some classic results on M -matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.