Abstract

Applying the survival function analysis to the planet radius distribution of the Kepler confirmed/candidate planets, we have identified two natural divisions of planet radius at 4 Earth radii and 10 Earth radii. These divisions place constraints on planet formation and interior structure model. The division at 4 Earth radii separates small exoplanets from large exoplanets above. When combined with the recently-discovered radius gap at 2 Earth radii, it supports the treatment of planets 2-4 Earth radii as a separate group, likely water worlds. For planets around solar-type FGK main-sequence stars, we argue that 2 Earth radii is the separation between water-poor and water-rich planets, and 4 Earth radii is the separation between gas-poor and gas-rich planets. We confirm that the slope of survival function in between 4 and 10 Earth radii to be shallower compared to either ends, indicating a relative paucity of planets in between 4-10 Earth radii, namely, the sub-Saturnian desert there. We name them transitional planets, as they form a bridge between the gas-poor small planets and gas giants. Accordingly, we propose the following classification scheme: (<2 Earth radii) rocky planets, (2-4 Earth radii) water worlds, (4-10 Earth radii) transitional planets, and (>10 Earth radii) gas giants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.