Abstract

Background and purposeThe purpose of this study was to evaluate the outcomes of elderly patients (aged ≥75 years) with newly diagnosed glioblastoma (GBM), who were treated with hypofractionated radiotherapy comprising 45 Gy in 15 fractions combined with temozolomide (TMZ) or TMZ and bevacizumab (TMZ/Bev).Materials and methodsBetween October 2007 and August 2018, 30 patients with GBM aged ≥75 years were treated with hypofractionated radiotherapy consisting of 45 Gy in 15 fractions. Twenty patients received TMZ and 10 received TMZ/Bev as upfront chemotherapy. O-6-methylguanine DNA methyltransferase (MGMT) promoter methylation status was analyzed by pyrosequencing. The cutoff value of the mean level of methylation at the 16 CpG sites was 16%.ResultsMedian overall survival (OS) and progression-free survival (PFS) were 12.9 months and 9.9 months, respectively. The 1-year OS and PFS rates were 64.7 and 34.7%, respectively. Median OS and PFS did not differ significantly between patients with MGMT promoter hypermethylation (N = 11) and those with hypomethylation (N = 16) (17.4 vs. 11.8 months, p = 0.32; and 13.1 vs. 7.3 months, p = 0.11, respectively). The median OS and PFS were not significantly different between TMZ (N = 20) and TMZ/Bev (N = 10) chemotherapy (median OS: TMZ 12.9 months vs. TMZ/Bev 14.6 months, p = 0.93, median PFS: TMZ 8.5 months vs TMZ/Bev 10.0 months, p = 0.64, respectively). The median time until Karnofsky performance status (KPS) score decreasing below 60 points was 7.9 months. The best radiological responses included 11 patients with a partial response (36.7%). Grade 3/4 toxicities included leukopenia in 15 patients (50%), anorexia in 4 (13.3%), and hyponatremia during concomitant chemotherapy in 3 (10%).ConclusionOur hypofractionated radiotherapy regimen combined with TMZ or TMZ/Bev showed benefits in terms of OS, PFS, and KPS maintenance with acceptable toxicities in elderly patients with GBM aged ≥75 years.

Highlights

  • Glioblastoma (GBM) is the most aggressive type of primary brain tumor

  • Our hypofractionated radiotherapy regimen combined with TMZ or TMZ and bevacizumab (TMZ/Bev) showed benefits in terms of overall survival (OS), progression-free survival (PFS), and Karnofsky performance status (KPS) maintenance with acceptable toxicities in elderly patients with GBM aged ≥75 years

  • The remaining 30 patients who underwent initial surgery followed by hypofractionated radiotherapy consisting of 45 Gy in 15 fractions combined with TMZ or TMZ/Bev were included in the study

Read more

Summary

Introduction

Glioblastoma (GBM) is the most aggressive type of primary brain tumor It predominantly affects elderly patients; the median age at diagnosis is 67 years, and 16.3% of patients diagnosed with GBM in Japan are older than 75 years [1]. The Nordic trial, which randomly assigned patients with newly diagnosed GBM who were aged 60 years and older to receive TMZ monotherapy, hypofractionated radiotherapy of 34 Gy in 10 fractions, or standard radiotherapy of 60 Gy in 30 fractions, demonstrated that hypofractionated radiotherapy produced survival rates that were similar to those in patients receiving standard radiotherapy [7]. The purpose of this study was to evaluate the outcomes of elderly patients (aged ≥75 years) with newly diagnosed glioblastoma (GBM), who were treated with hypofractionated radiotherapy comprising 45 Gy in 15 fractions combined with temozolomide (TMZ) or TMZ and bevacizumab (TMZ/Bev)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.