Abstract

BackgroundPatients with sepsis with a high ratio of visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT) have increased mortality. Our goal was to investigate the mechanism of this effect, noting that low LDL levels are also associated with increased sepsis mortality. Accordingly we tested for association between VAT/SAT, low-density lipoprotein (LDL) levels, and mortality. Then we examined the effect of statin treatment, which decreases LDL production, and the effect of PCSK9 genotype, which increases LDL clearance.MethodsWe performed retrospective analysis of a cohort of patients with sepsis from a tertiary care adult intensive care unit in Vancouver, Canada, who underwent abdominal computed tomography (CT) (n = 75) for clinical reasons. We compared LDL levels in patients with sepsis according to high versus low VAT/SAT and 90-day survival. We next examined the effects of statin therapy and PCSK9 loss-of-function genotype on survival.ResultsPatients with a low VAT/SAT had increased 90-day survival and were relatively protected against low LDL levels in sepsis compared to high VAT/SAT. Statin treatment abrogated the beneficial effects of low VAT/SAT; eliminating the difference in LDL levels and survival between patients with low and high VAT/SAT. PSCK9 loss-of-function genotype similarly eliminated the increased LDL levels in low VAT/SAT patients but, in contrast, increased the survival advantage of low VAT/SAT compared to high VAT/SAT.ConclusionsLow LDL levels per se are not simply associated with decreased sepsis survival because lowering LDL levels by inhibiting LDL production (statin treatment) is associated with adverse outcomes, while increased LDL clearance (PCSK9 loss-of-function genotype) is associated with improved outcomes in patients with low VAT/SAT.

Highlights

  • Patients with sepsis with a high ratio of visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT) have increased mortality

  • Since pathogen lipids are sequestered within lipoproteins such as lowdensity lipoprotein (LDL) during sepsis, decreased production of LDL leading to low LDL levels may decrease the buffering capacity of LDL for pathogen lipids [8, 9] and allow unbound pathogen lipid to trigger a greater inflammatory response leading to adverse clinical outcomes

  • In patients with low versus high visceral adipose tissue to subcutaneous adipose tissue (VAT/SAT) ratios, we examined the effect of statins to understand the effect of decreased LDL production, and examined the effect of PCSK9 loss-offunction genotype to understand the effect of increased LDL clearance in patients with sepsis

Read more

Summary

Introduction

Patients with sepsis with a high ratio of visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT) have increased mortality. Our goal was to investigate the mechanism of this effect, noting that low LDL levels are associated with increased sepsis mortality. We tested for association between VAT/SAT, lowdensity lipoprotein (LDL) levels, and mortality. Discrepancies between studies may be partly explained by the recent discovery that patients with a high ratio of abdominal visceral adipose tissue to subcutaneous adipose tissue (VAT/SAT) have increased mortality from sepsis compared to patients with low VAT/SAT [4] at any level. We suggest that it may be necessary to consider the underlying balance of LDL production versus LDL clearance mechanisms when considering prognostic prediction of survival according to LDL levels in sepsis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call