Abstract

Pithophora oedogonia and Cladophora glomerata survived lowest 60 and 58%, respectively, in June when the pond diurnal water temperature (PDWT) increased to a maximum of 28 degrees C. The lowering of PDWT only by 1 degrees C in July improved survivability of both algae to their almost maximum level of 100 and 96%, respectively. Further lowering of PDWT to 17-22 degrees C in November initiated akinete formation in P. oedogonia. The process of akinete initiation, maturation and germination continued till April when PDWT increased to 20-24 degrees C, but not beyond that in May when PDWT was 21-26 degrees C. By this time, probably all akinetes have germinated in situ, and the alga was entirely vegetative. P. oedogonia population is not synchronous in nature, since during the 5-6-month reproductive season, some filaments were in active vegetative stage, some had akinete initiation, some had completed akinete formation, and some had akinetes germinating. C. glomerata grew dense vegetative in November and initiated (zoo)sporangial primordia formation (to some extent) in February (when PDWT was lowest, viz. 10-14 degrees C) till April. Meanwhile, no (zoo)-sporangial primordia either produced any zoospore or germinated into a germ tube; and all released their cytoplasmic content and died (along with some vegetative cells) with an increase in PDWT to 21-26 degrees C in May. Vaucheria geminata vegetative patches appeared on the soil surface, 2nd week of January by lowering of atmospheric diurnal temperature (ADT) to 9-16 degrees C in the 1st week. The alga started sexual reproduction by the 2nd week of March (when ADT increased to 20-23 degrees C) and completed the process of reproduction by the 1st week of April (when ADT increased to 24-26 degrees C) and died thereafter. P. oedogonia, C. glomerata and V. geminata survived better and longer in submerged conditions than air-exposed (which was true for P. oedogonia and C. glomerata aquatic habitat and also indicated that the soil alga V. geminata could survive to some extent if submerged in rain water). P. oedogonia formed akinetes and C. glomerata (zoo)sporangial primordia only in submerged condition and not when air-exposed on moist soil surface. V. geminata did not complete the life cycle both under submerged and air-exposed conditions. Vegetative survival in P. oedogonia, C. glomerata, V. geminata, Aphanothece pallida, Gloeocapsa atrata, Scytonema millei, Myxosarcina burmensis, Phormidium bohneri, Oscillatoria animalis, O. subbrevis, Lyngbya birgei, L. major, Microcoleus chthonoplastes and Rhizoclonium crassipellitum, reproduction in P. oedogonia, C. glomerata and V. geminata, cell division in A. pallida and G. atrata, heterocyst and false branch formation in S. millei, all, were adversely affected at approximately 28.5 degrees C for t12 h at light intensity of approximately 160 micromol m(-2) s(-1); high intensity does not ameliorate high temperature damage to any algae. The presence of liquid water, than its absence, outside the different algae moderated the severity of heat to some extent but not when the heat was severe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call