Abstract

Transplantation of stem cells is one of the approaches to treat retinal diseases. Our objective was to determine whether adipose-derived stem cell transplant can survive and migrate in the injured retina using a sodium iodate model for the pigmented retinal epithelium injury. The adipose-derived stem cells were isolated from male albino Sprague-Dawley rats and labeled with DiI so as to track the transplants in the subretinal space. Retinal pigmented epithelium damage was induced by retro-orbital sinus sodium iodate injection (40 mg/kg) into albino Sprague-Dawley rats. Four weeks after transplantation, the eyeballs were fixed in 4% paraformaldehyde and cut with cryostat. The eyeballs were serially sectioned along the vertical meridian. Cryosections were from the full length of the retina and passing through the optic nerve head. The survival and migration of transplanted cells were assessed. Sodium iodate selectively destroyed the retinal pigmented epithelium layer. The transplanted cells incorporated into the retinal pigmented epithelium layer, perhaps differentiating into a retinal pigmented epithelium phenotype. The transplanted cells were located in the subretinal space; after 4 weeks, some were observed in the retinal pigmented epithelium layer. We found that adipose-derived stem cells survived for 4 weeks after transplantation and migrated into the retinal pigmented epithelium layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.