Abstract

BackgroundIn nature, insects have evolved behavioural and physiological adaptations to cope with short term exposure to extreme temperatures. Extreme heat events may increase as a result of climate change; this in turn will affect insect population dynamics. We examined the effect of abrupt and ecologically relevant gradual exposure to high temperatures on the survival and hsp70 gene expression in diamondback moth (DBM) adults and the parasitoid Diadegma insulare , as well as in parasitized and non-parasitized DBM larvae.Principal FindingsTolerance to high temperatures in DBM adults was higher than in D . insulare adults. There was no difference in the survival of DBM adults between abrupt and ramped increases from 25 to 38°C; however, at 40°C survival was higher when the temperature increased gradually. In contrast, more D . insulare adults survived when the temperature was ramped rather than shifted abruptly to both 38 and 40°C. There was no heat stress effect of up to 40°C on the survival of either parasitized or non-parasitized DBM larvae. In adults of both species, more hsp70 expression was observed when temperatures increased abruptly to 38°C compared to ramping. In contrast, at 40°C significantly more expression was found in insects exposed to the ramping rather than the abrupt regime. Hsp70 expression level was in agreement with adult survival data and appears to be a good indicator of stress levels. In parasitized and non-parasitized larvae, hsp70 expression was significantly higher after abrupt shifts compared to ramping at both temperatures.Conclusions/Significance Hsp70 gene expression was responsive to extreme temperatures in both DBM and D . insulare , which may underlie the ability of these insects to survive in extreme temperatures. Survival and hsp70 expression upon abrupt changes are distinctly different from those after ramping indicating that experimental protocol must be considered before extrapolating laboratory results to natural field situations.

Highlights

  • One of the features of global climate change is the increasing magnitude and frequency of extreme temperature events [1]

  • At 40°C, significantly (P

  • The major findings in this study were the variation in survival and hsp70 gene expression in DBM and D. insulare between abrupt and slowly ramping to extreme high temperatures

Read more

Summary

Introduction

One of the features of global climate change is the increasing magnitude and frequency of extreme temperature events [1]. We examined the effect of abrupt and ecologically relevant gradual exposure to high temperatures on the survival and hsp gene expression in diamondback moth (DBM) adults and the parasitoid Diadegma insulare, as well as in parasitized and non-parasitized DBM larvae. There was no heat stress effect of up to 40°C on the survival of either parasitized or non-parasitized DBM larvae In adults of both species, more hsp expression was observed when temperatures increased abruptly to 38°C compared to ramping. In parasitized and non-parasitized larvae, hsp expression was significantly higher after abrupt shifts compared to ramping at both temperatures. Survival and hsp expression upon abrupt changes are distinctly different from those after ramping indicating that experimental protocol must be considered before extrapolating laboratory results to natural field situations

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call