Abstract

Clonal populations are hierarchically organized: genetic individuals (genets) can consist of many physiological individuals (ramets). Each ramet takes up resources from its local environment, but the resource pattern can be reorganized within the clone by transport between ramets. Thus, an integrated clone is not directly subject to the pattern of resource availability in its habitat. Local shortages can be compensated, hence, the clone can buffer itself against spatio-temporal heterogeneity in the habitat. We modelled a series of habitat types, assuming that one limiting resource was patchily distributed in space, and could fluctuate over time. Habitat types differed in the density, size and persistence of resource patches, and in the contrast between resource-rich patches and the resource-poor background. We applied an individual-based, spatially explicit population dynamic model to compare the performance of two plant strategies in these habitat types. In the Integrator, ramets that were interconnected...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call