Abstract
This paper describes a comprehensive survival analysis for the inverse Gaussian distribution employing Bayesian and Fiducial approaches. It focuses on making inferences on the inverse Gaussian (IG) parameters μ and λ and the average remaining time of censored units. A flexible Gibbs sampling approach applicable in the presence of censoring is discussed and illustrations with Type II, progressive Type II, and random rightly censored observations are included. The analyses are performed using both simulated IG data and empirical data examples. Further, the bootstrap comparisons are made between the Bayesian and Fiducial estimates. It is concluded that the shape parameter () of the inverse Gaussian distribution has the most impact on the two analyses, Bayesian vs. Fiducial, and so does the size of censoring in data to a lesser extent. Overall, both these approaches are effective in estimating IG parameters and the average remaining lifetime. The suggested Gibbs sampler allowed a great deal of flexibility in implementation for all types of censoring considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.