Abstract
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.
Highlights
Forest fires are important events in many terrestrial ecosystems, including the boreal forests of North America
Most (629/889) fires in our final data set showed no recorded increase in size after initial assessment
First we used logistic regression to classify our sample into groups which did, or did not, exhibit such size growth
Summary
Forest fires are important events in many terrestrial ecosystems, including the boreal forests of North America. In many areas where they occur, fire management agencies attempt to control the growth and limit the size of these fires, to protect human lives, infrastructure, and natural resources. The impact of these attempts on fire size has never been fully quantified. Several correlative studies have established relationships between fuel type and meteorological indices of fuel moisture content on parameters of fire size distribution [1][2]. Several studies have established correlations between fire management actions and the probabilities of events such as of a fire
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.