Abstract
Lung cancer is a major reason of mortalities. Estimating the survivability for this disease has become a key issue to families, hospitals, and countries. A conditional Gaussian Bayesian network model was presented in this study. This model considered 15 risk factors to predict the survivability of a lung cancer patient at 4 severity stages. We surveyed 1075 patients. The presented model is constructed by using the demographic, diagnosed-based, and prior-utilization variables. The proposed model for the survivability prognosis at different four stages performed R2 of 93.57%, 86.83%, 67.22%, and 52.94%, respectively. The model predicted the lung cancer survivability with high accuracy compared with the reported models. Our model also shows that it reached the ceiling of an ideal Bayesian network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.