Abstract
Whale Optimization Algorithm (WOA) proposed by Seyedali Mirjalili and Andrew Lewis in 2016 is popular and powerful metaheuristic algorithm to search the global solution of optimization problems. WOA is nature-inspired, metaheuristic (randomization and deterministic) algorithm, which has been widely used to solve various single objective, multi objective and multidimensional optimization problems. WOA and its variant have been introduced in engineering applications, bioinformatics, multi-level image segmentation, clustering applications, design of low pass filter, Email classification, Diabetes classification, heterogeneous networks, machine learning etc. WOA is gradient free, easy to represent, capable to explore, exploit the search space and able to avoid local optima. This paper presents overview of WOA, its variants and applications. The performance of WOA is enhanced by introducing hybridization of other methods with WOA such as WOA-PSO, WOA-Levy, WOA-BAT, WOA-ANN, WOA-SVM etc. Objective of metaheuristic algorithm is tofind best position or leader position X* which is near to optimal solution for target prey over successive iteration. Objective function could be based on minimization or maximization approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.