Abstract
Iterative learning control (ILC) is suitable for systems that are able to repeatedly complete several tasks over a fixed time interval. Since it was first proposed, ILC has been further developed through extensive efforts. However, there are few related results on systems with stochastic signals, where by stochastic signal we mean one that is described by a random variable. Stochastic iterative learning control (SILC) is defined as ILC for systems that contain stochastic signals including system noises, measurement noises, random packet losses, etc. This manuscript surveys the current state of the art in SILC from the perspective of key techniques, which are divided into three parts: SILC for linear stochastic systems, SILC for nonlinear stochastic systems, and systems with other stochastic signals. In addition, three promising directions are also provided, namely stochastic ILC for point-to-point control, stochastic ILC for iteration-varying reference tracking, and decentralized/distributed coordinated stochastic ILC, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.