Abstract

Glyphosate resistance in Amaranthus palmeri, one of the most prevalent herbicide-resistant weeds in the USA, is attributable to amplification and increased expression of the gene encoding the target site of glyphosate, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). The EPSPS gene and the surrounding 287 kilobases (kb) of amplified sequence are unique to glyphosate-resistant plants and termed the EPSPS cassette. It has only been sequenced in one A. palmeri population from Mississippi. This research compares EPSPS cassettes in seven resistant and five sensitive populations from geographically distant locations within the USA, including Mississippi, Arizona, Kansas, Maryland, Delaware and Georgia. Polymerase chain reaction (PCR) products from 40 primer pairs specific to the cassette were similar in size and sequence in resistant populations. Several primer pairs failed to generate PCR products in sensitive populations. Regions of the cassette sequenced in the resistant populations were found to be nearly identical to those from Mississippi. Gene expression analysis showed that both EPSPS and another gene in the cassette, a reverse transcriptase, were elevated in all resistant populations tested relative to the sensitive populations. EPSPS cassettes from distant resistant populations were nearly homologous. Considering the complexity of the cassette, and the degree of similarity among some cassette sequences, the results are consistent with the hypothesis that glyphosate resistance probably evolved once and then rapidly spread across the USA. © 2017 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.