Abstract

BackgroundThe development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples. In addition, the interactions among four different rumen microbial groups (bacteria, archaea, fungi and protozoa) in the rumen of yak are not well defined. In this study, the rumen microbiota of full-grazing yaks aged 7 days to 12 years old was assessed to determine the maturation patterns of these four microbial groups and the dynamic interactions among them during different growth stages.ResultsThe rumen microbial groups (bacteria, archaea, protozoa and fungi) varied through the growth of yaks from neonatal (7 days) to adult (12 years), and the bacterial and archaeal groups were more sensitive to changes in growth stages compared to the two eukaryotic microbial groups. The age-discriminatory taxa within each microbial group were identified with the random forest model. Among them, Olsenella (bacteria), Group 10 sp., belonging to the family Methanomassiliicoccaceae (archaea), Orpinomyces (fungi), and Dasytricha (protozoa) contributed the most to discriminating the age of the rumen microbiota. Moreover, we found that the rumen archaea reached full maturation at 5 approximately years of age, and the other microbial groups matured between 5 and 8 years of age. The intra-interactions patterns and keystone species within each microbial group were identified by network analysis, and the inter-interactions among the four microbial groups changed with growth stage. Regarding the inter-interactions among the four microbial groups, taxa from bacteria and protozoa, including Christensenellaceae R-7 group, Prevotella 1, Trichostomatia, Ruminococcaceae UCG-014 and Lachnospiraceae, were the keystone species in the network based on betweenness centrality scores.ConclusionsThis study depicted a comprehensive view of rumen microbiota changes in different growth stages of grazing yaks. The results revealed the unique microbiota maturation trajectory and the intra- and inter-interactions among bacteria, archaea, fungi and protozoa in the rumen of grazing yaks across the lifetime of yaks. The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem.

Highlights

  • The development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples

  • The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem

  • Bacteria and archaea were observed before 7 days, while protozoa and fungi were detected at approximately 1 month of age, suggesting that rumen prokaryotes generally appeared earlier than eukaryotes in the rumen of grazing yaks

Read more

Summary

Introduction

The development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples. Yaks graze yearly on native pastures with coarse grasses as their only food source [6] They suffer from inadequate feed and malnutrition in the long and cold seasons [7], they degrade lignocellulose better and have more efficient energy (producing more short chain fatty acids in the rumen) and nitrogen metabolism (higher nitrogen retention) compared to cattle under the same conditions [8, 9]. We comprehensively investigated rumen microbial composition (including bacteria, archaea, protozoa and fungi) and their interactions with each other, which is essential for developing appropriate manipulation strategies that promote yaks to better adapt to the extreme grazing environment

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.