Abstract

In recent years, convolutional neural networks (CNNs) are leading the way in many computer vision tasks, such as image classification, object detection, and face recognition. In order to produce more refined semantic image segmentation, we survey the powerful CNNs and novel elaborate layers, structures and strategies, especially including those that have achieved the state-of-the-art results on the Pascal VOC 2012 semantic segmentation challenge.Moreover, we discuss their different working stages and various mechanisms to utilize the structural and contextual information in the image and feature spaces. Finally, combining some popular underlying referential methods in homologous problems, we propose several possible directions and approaches to incorporate existing effective methods as components to enhance CNNs for the segmentation of specific semantic objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.