Abstract
Abstract Dealing with astronomical observations represents one of the most challenging areas of big data analytics. Besides huge variety of data types, dynamics related to continuous data flow from multiple sources, handling enormous volumes of data is essential. This paper provides an overview of methods aimed at reducing both the number of features/attributes as well as data instances. It concentrates on data mining approaches not related to instruments and observation tools instead working on processed object-based data. The main goal of this article is to describe existing datasets on which algorithms are frequently tested, to characterize and classify available data reduction algorithms and identify promising solutions capable of addressing present and future challenges in astronomy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.