Abstract

Medical imaging devices, such as X-ray machines, inherently produce images that suffer from visual noise. Our objectives were to (i.) determine the effect of image denoising on a medical image classification task, and (ii.) determine if there exists a correlation between image denoising performance and medical image classification performance. We performed the medical image classification task on chest X-rays using the DenseNet-121 convolutional neural network (CNN) and used the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics as the image denoising performance measures. We first found that different denoising methods can make a statistically significant difference in classification performance for select labels. We also found that denoising methods affect fine-tuned models more than randomly-initialized models and that fine-tuned models have significantly higher and more uniform performance than randomly-initialized models. Lastly, we found that there is no significant correlation between PSNR and SSIM values and classification performance for our task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call