Abstract

In the last few decades, researchers have developed a plethora of hyperspectral Earth Observation (EO) remote sensing techniques, analysis and applications. While hyperspectral exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing is now providing free, open, global and systematic high resolution visible and infrared imagery at a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral data. This study, therefore, reviews 20 years of research and applications in satellite hyperspectral remote sensing through the analysis of Earth observation hyperspectral sensors’ publications that cover the Sentinel-2 spectrum range: Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, Shalom, HyspIRI and HypXIM. More specifically, this study (i) brings face to face past and future hyperspectral sensors’ applications with Sentinel-2’s and (ii) analyzes the applications’ requirements in terms of spatial and temporal resolutions. Eight main application topics were analyzed including vegetation, agriculture, soil, geology, urban, land use, water resources and disaster. Medium spatial resolution, long revisit time and low signal-to-noise ratio in the short-wave infrared of some hyperspectral sensors were highlighted as major limitations for some applications compared to the Sentinel-2 system. However, these constraints mainly concerned past hyperspectral sensors, while they will probably be overcome by forthcoming instruments. Therefore, this study is putting forward the compatibility of hyperspectral sensors and Sentinel-2 systems for resolution enhancement techniques in order to increase the panel of hyperspectral uses.

Highlights

  • Hyper- and multi-spectral technologies have both assisted remote sensing Earth Observation (EO) to stride forward in the past few decades

  • Thanks to emblematic sensors such as HyMAP, Compact Airborne Spectrographic Imager (CASI), Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS), Digital Airborne Imaging Spectrometer (DAIS), Reflective Optics System Imaging Spectrometer (ROSIS), Airborne Imaging Spectrometer for Applications (AISA), Hyperspectral Digital Imagery Collection Experiment (HYDICE), Multispectral Infrared Visible Imaging Spectrometer (MIVIS), etc., hyperspectral research quickly expanded the number of hyperspectral applications in vegetation monitoring, water resources management, geology and land cover [9,10,11,12]

  • As this study aims to target applications for hyperspectral sensors in the S2 context, this review focuses on EO spaceborne sensors with a ≤60-m resolution with a Visible to Near-InfraRed (VNIR) and Short-Wave InfraRed (SWIR) capacity

Read more

Summary

Introduction

Hyper- and multi-spectral technologies have both assisted remote sensing Earth Observation (EO) to stride forward in the past few decades. Thanks to emblematic sensors such as HyMAP, Compact Airborne Spectrographic Imager (CASI), Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) , Digital Airborne Imaging Spectrometer (DAIS), Reflective Optics System Imaging Spectrometer (ROSIS), Airborne Imaging Spectrometer for Applications (AISA), Hyperspectral Digital Imagery Collection Experiment (HYDICE), Multispectral Infrared Visible Imaging Spectrometer (MIVIS), etc., hyperspectral research quickly expanded the number of hyperspectral applications in vegetation monitoring, water resources management, geology and land cover [9,10,11,12] They do not allow regular and synoptic coverages over large areas as spaceborne sensors. Spaceborne sensors produce images with lower angular effects due to their much smaller field of view

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call