Abstract

A data string can be represented with the help of a context-free grammar such that the string is the unique string belonging to the language of the grammar. One can then losslessly compress the string indirectly by encoding the grammar into a unique binary codeword. This approach to data compression, called grammar-based data compression, can also be employed to losslessly compress graphical data structures, which are graphs in which every vertex carries a data label. Under mild restrictions, grammar-based data compression schemes are universal compressors, meaning that they perform at least as well as any finite-state compression scheme. Some of the theory of universal grammar-based compressors is surveyed. Applications of grammar-based compressors to various areas such as bioinformatics and data networks are discussed. Future directions for grammar-based compression research are outlined, including compression issues arising in highly repetitive databases and issues concerning the compression of sparse graphical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.