Abstract

The development of emissive lanthanide complexes as structural or reactive probes to signal changes in their local chiral or ionic environment has been inhibited by the lack of understanding of correlating structural and electronic spectral information. The definition of relatively rigid enantiopure macrocyclic lanthanide complexes, whose inter- and intramolecular exchange dynamics have been defined, offers scope for remedying this situation. Chiral axially symmetric lanthanide complexes in solution give rise to large emission dissymmetry values (g(em)) in CPL spectra. The sign and magnitude of g(em) are determined by the degree of twist about the principal axis, which is predicted to be a maximum at +/-22.5 degrees, and by the site symmetry and local ligand field. In particular, the polarisability of the ligand donor atoms, especially for any axial donor, is very important. Examples of each case are discussed for structurally related cationic Eu(III) complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.