Abstract

Three copper-based alloys, CDA 102 (oxygen-free, high-purity copper), CDA 613 (aluminum bronze), and CDA 715 (Cu-30Ni), are candidates for the fabrication of high-level radioactive-waste disposal containers. Waste will include spent fuel assemblies from reactors as well as borosilicate glass, and will be sent to the prospective repository site at Yucca Mountain in Nye County, Nevada. The decay of radionuclides will result in the generation of substantial heat and in fluxes of gamma radiation outside the containers. In this environment, container materials might degrade by atmospheric oxidation, general aqueous phase corrosion, localized corrosion (LC), and stress corrosion cracking (SCC). This volume is a critical survey of available data on pitting and crevice corrosion of the copper-based candidates. Pitting and crevice corrosion are two of the most common forms of LC of these materials. Data on the SCC of these alloys is surveyed in Volume 4. Pitting usually occurs in water that contains low concentrations of bicarbonate and chloride anions, such as water from Well J-13 at the Nevada Test Site. Consequently, this mode of degradation might occur in the repository environment. Though few quantitative data on LC were found, a tentative ranking based on pitting corrosion, local dealloying, crevice corrosion, and biofouling is presented. CDA 102 performs well in the categories of pitting corrosion, local dealloying, and biofouling, but susceptibility to crevice corrosion diminishes its attractiveness as a candidate. The cupronickel alloy, CDA 715, probably has the best overall resistance to such localized forms of attack. 123 refs., 11 figs., 3 tabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.