Abstract

A vital part of the licensing process for advanced (non-LWR) nuclear reactor developers in the United States is the assessment of the reactor’s source term, i.e., the potential release of radionuclides from the reactor system to the environment during normal operations and accident sequences. In comparison to source term assessments which follow a bounding approach with conservative assumptions, a mechanistic approach to modeling radionuclide transport, which realistically accounts for transport and retention phenomena, is expected to be used for advanced reactor systems. As the designs of advanced reactors increase in maturity and progress towards licensing, there is a need to advance modeling and simulation capabilities in analyzing the mechanistic source term (MST) of a prospective reactor concept. In the present work, a survey is provided of existing computational capabilities for the modeling of advanced reactors MSTs. The following reactors are considered: high temperature gas reactors (HTGR); molten salt reactors (MSR) which include salt-fueled reactors and fluoride salt-cooled high temperature reactors (FHR); and sodium- and lead-cooled fast reactors (SFR, LFR). A review of relevant codes which may be useful in providing information to MST analyses is also completed, including codes that have been used for source term analyses of LWRs, as well as those being developed for other aspects of advanced reactor system modeling such as reactor physics, thermal hydraulics, and chemistry. A discussion of MST modeling capabilities for each reactor type is provided with additional focus on important phenomena and functional requirements. Additionally, a comprehensive survey is provided of tools for consequence modeling such as atmospheric transport and dispersion (ATD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call