Abstract
Communicable diseases pose a severe threat to public health and economic growth. The traditional methods that are used for public health surveillance, however, involve many drawbacks, such as being labor intensive to operate and resulting in a lag between data collection and reporting. To effectively address the limitations of these traditional methods and to mitigate the adverse effects of these diseases, a proactive and real-time public health surveillance system is needed. Previous studies have indicated the usefulness of performing text mining on social media. To conduct a systematic review of the literature that used textual content published to social media for the purpose of the surveillance and prediction of communicable diseases. Broad search queries were formulated and performed in four databases. Both journal articles and conference materials were included. The quality of the studies, operationalized as reliability and validity, was assessed. This qualitative systematic review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Twenty-three publications were included in this systematic review. All studies reported positive results for using textual social media content to surveille communicable diseases. Most studies used Twitter as a source for these data. Influenza was studied most frequently, while other communicable diseases received far less attention. Journal articles had a higher quality (reliability and validity) than conference papers. However, studies often failed to provide important information about procedures and implementation. Text mining of health-related content published on social media can serve as a novel and powerful tool for the automated, real-time, and remote monitoring of public health and for the surveillance and prediction of communicable diseases in particular. This tool can address limitations related to traditional surveillance methods, and it has the potential to supplement traditional methods for public health surveillance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.