Abstract
Non-small cell cancer (NSCLC) has been identified with a great variation of mutations that can be surveyed during disease progression. The aim of the study was to identify and monitor lung cancer-specific mutations incidence in cell-free DNA as well as overall plasma cell-free DNA load by means of targeted next-generation sequencing. Sequencing libraries were prepared from cell-free DNA (cfDNA) isolated from 72 plasma samples of 41 patients using the Oncomine Lung cfDNA panel covering hot spot regions of 11 genes. Sequencing was performed with the Ion Torrent™ Ion S5™ system. Four genes were detected with highest mutation incidence: KRAS (43.9% of all cases), followed by ALK (36.6%), TP53 (31.7%), and PIK3CA (29.3%). Seven patients had co-occurring KRAS + TP53 (6/41, 14.6%) or KRAS + PIK3CA (7/41, 17.1%) mutations. Moreover, the mutational status of TP53 as well an overall cell-free DNA load were confirmed to be predictors of poor progression-free survival (HR = 2.5 [0.8-7.7]; p = 0.029 and HR = 2.3 [0.9-5.5]; p = 0.029, respectively) in NSCLC patients. In addition, TP53 mutation status significantly predicts shorter overall survival (HR = 3.4 [1.2-9.7]; p < 0.001). We demonstrated that TP53 mutation incidence as well as a cell-free DNA load can be used as biomarkers for NSCLC monitoring and can help to detect the disease progression prior to radiological confirmation of the status.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.