Abstract

Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles, Lidars are accurate in determining objects’ positions but significantly less accurate as Radars on measuring their velocities. However, Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution. In order to compensate for the low detection accuracy, incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR, in this paper, an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles. By employing the Unscented Kalman Filter, Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle. Finally, the real vehicle test under various driving environment scenarios is carried out. The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy. Compared with a single sensor, it has obvious advantages and can improve the intelligence level of autonomous cars.

Highlights

  • 1 Introduction Autonomous vehicle is a kind of intelligent car, which mainly relies on the computer system and sensor system inside the car to realize autonomous

  • We found that combining the advantages of LiDAR in position perception with the advantages of radar in target speed, the information fusion system based on LiDAR and Radar can obtain more accurate target position and speed information, and effectively improve the surrounding target perception accuracy of autonomous vehicles

  • Our methods have been evaluated on our autonomous vehicle

Read more

Summary

Introduction

Autonomous vehicle is a kind of intelligent car, which mainly relies on the computer system and sensor system inside the car to realize autonomous. Autonomous cars are integrated with automatic control, architecture, artificial intelligence, visual computing and many other technologies [1]. It is a highly developed product of computer science, pattern recognition and intelligent control technology, as well as an important symbol to measure a country’s scientific research strength and industrial level [2]. It has a broad application prospect in the field of national defense and national economy. The most commonly used on-board sensors are LiDAR, radar and

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call