Abstract

In the visual world, stimuli compete with each other for allocation of the brain's limited processing resources. Computational models routinely invoke wide-ranging mutually suppressive interactions in spatial priority maps to implement active competition for attentional and saccadic allocation, but such suppressive interactions have not been physiologically described, and their existence is controversial. Much evidence implicates the lateral intraparietal area as a candidate priority map in the macaque (Macaca mulatta). Here, we demonstrate that the responses of neurons in the lateral intraparietal area (LIP) to a task-irrelevant distractor are strongly suppressed when the monkey plans saccades to locations outside their receptive fields. Suppression can be evoked both by flashed visual stimuli and by a memorized saccade plan. The suppressive surrounds of LIP neurons are spatially tuned and wide ranging. Increasing the monkey's motivation enhances target-distractor discriminability by enhancing both distractor suppression and the saccade goal representation; these changes are accompanied by correlated improvements in behavioral performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.