Abstract

We discuss PDE-constrained optimization problems with iterative state solvers. As typical and challenging example, we present an application in climate research, namely a parameter optimization problem for a marine ecosystem model. Therein, a periodic state is obtained via a slowly convergent fixed-point type iteration. We recall the algorithm that results from a direct or black-box optimization of such kind of problems, and discuss ways to obtain derivative information to use in gradient-based methods. Then we describe two optimization approaches, the One-shot and the Surrogate-based Optimization method. Both methods aim to reduce the high computational effort caused by the slow state iteration. The idea of the One-shot approach is to construct a combined iteration for state, adjoint and parameters, thus avoiding expensive forward and reverse computations of a standard adjoint method. In the Surrogate-based Optimization method, the original model is replaced by a surrogate which is here based on a truncated iteration with fewer steps. We compare both approaches, provide implementation details for the presented application, and give some numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.