Abstract

Aerodynamic shape optimization driven by high-fidelity computational fluid dynamics (CFD) simulations is still challenging, especially for complex aircraft configurations. The main difficulty is not only associated with the extremely large computational cost, but also related to the complicated design space with many local optima and a large number of design variables. Therefore, development of efficient global optimization algorithms is still of great interest. This study focuses on demonstrating surrogate-based optimization (SBO) for a wing-body configuration representative of a modern civil transport aircraft parameterized with as many as 80 design variables, while most previous SBO studies were limited to rather simple configurations with fewer parameters. The freeform deformation (FFD) method is used to control the shape of the wing. A Reynolds-averaged Navier-Stokes (RANS) flow solver is used to compute the aerodynamic coefficients at a set of initial sample points. Kriging is used to build a surrogate model for the drag coefficient, which is to be minimized, based on the initial samples. The surrogate model is iteratively refined based on different sample infill strategies. For 80 design variables, the SBO-type optimizer is shown to converge to an optimal shape with lower drag based on about 300 samples. Several studies are conducted on the influence of the resolution of the computational grid, the number and randomness of the initial samples, and the number of design variables on the final result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.