Abstract

AbstractSurrogate-assisted optimization algorithms are a commonly used technique to solve expensive-evaluation problems, in which a regression model is built to replace an expensive function. In some acquisition functions, the only requirement for a regression model is the predictions. However, some other acquisition functions also require a regression model to estimate the “uncertainty” of the prediction, instead of merely providing predictions. Unfortunately, very few statistical modeling techniques can achieve this, such as Kriging/Gaussian processes, and recently proposed genetic programming-based (GP-based) symbolic regression with Kriging (GP2). Another method is to use a bootstrapping technique in GP-based symbolic regression to estimate prediction and its corresponding uncertainty. This paper proposes to use GP-based symbolic regression and its variants to solve multi-objective optimization problems (MOPs), which are under the framework of a surrogate-assisted multi-objective optimization algorithm (SMOA). Kriging and random forest are also compared with GP-based symbolic regression and GP2. Experiment results demonstrate that the surrogate models using the GP2 strategy can improve SMOA’s performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call